Startups

4 questions to ask before building a computer vision model

Comment

Close-Up Of Number 4 On Table. 4 questions to ask when building a deep learning model
Image Credits: Stefano Stignani / EyeEm (opens in a new window) / Getty Images

Eric Landau

Contributor

Before Eric Landau co-founded Encord, he spent nearly a decade at DRW, where he was lead quantitative researcher on a global equity delta one desk and put thousands of models into production. He holds an S.M. in Applied Physics from Harvard University, an M.S. in Electrical Engineering and a B.S. in Physics from Stanford University.

More posts from Eric Landau

In 2015, the launch of YOLO — a high-performing computer vision model that could produce predictions for real-time object detection — started an avalanche of progress that sped up computer vision’s jump from research to market.

It’s since been an exciting time for startups as entrepreneurs continue to discover use cases for computer vision in everything from retail and agriculture to construction. With lower computing costs, greater model accuracy and rapid proliferation of raw data, an increasing number of startups are turning to computer vision to find solutions to problems.

However, before founders begin building AI systems, they should think carefully about their risk appetite, data management practices and strategies for future-proofing their AI stack.


TechCrunch+ is having a Memorial Day sale. You can save 50% on annual subscriptions for a limited time.


Below are four factors that founders should consider when deciding to build computer vision models.

Is deep learning the right tool for solving my problem?

It may sound crazy, but the first question founders should ask themselves is if they even need to use a deep learning approach to solve their problem.

During my time in finance, I often saw that we’d hire a new employee right out of university who would want to use the latest deep learning model to solve a problem. After spending time working on the model, they’d come to the conclusion that using a variant of linear regression worked better.

The moral of the story?

Deep learning might sound like a futuristic solution, but in reality, these systems are sensitive to many small factors. Often, you can already use an existing and simpler solution — such as a “classical” algorithm — that produces an equally good or better outcome for lower cost.

Consider the problem, and the solution, from all angles before building a deep learning model.

Deep learning in general, and computer vision in particular, hold a great deal of promise for creating new approaches to solving old problems. However, building these systems comes with an investment risk: You’ll need machine learning engineers, a lot of data and validation mechanisms to put these models into production and build a functioning AI system.

It’s best to evaluate whether a simpler solution could solve your problem before beginning such a large-scale effort.

Perform a thorough risk assessment

Before building any AI system, founders must consider their risk appetite, which means evaluating the risks that occur at both the application layer and the research and development stage.

Roughly speaking, in R&D, the risk is that a model won’t meet certain metric-based performance criteria, and at the application-level, the risk is that the production system will not succeed within the context in which it is placed.

While machine learning-oriented founders tend to focus on R&D risks, a better first step is to create an assessment criteria for the application-level risk. Factors in this assessment will differ by application, but they often include potential risks in regulation, public perception and systems-level engineering.

The first step of building an effective framework often involves understanding the consequence of model errors (such as false positives or false negatives) within your application. The target use case has an important effect on this analysis — after all, there’s a huge difference between the application risk for using AI to filter emails and using AI to run autonomous vehicles.

The consequence of a model allowing one of every 1,000 spam emails to go to your inbox is minor. At worst, receiving a spam email moderately annoys someone, so this model has an acceptable application risk level for production. However, the consequence of mistaking a green light for a red one is severe. A computer vision model that mistakes one of every 1,000 green lights for red is just not capable of going into production.

Founders should first map out the consequences of errors in their application, because these consequences influence the evaluation of R&D risk. Depending on the application risk, AI systems need to meet different performance benchmarks before going into production.

For low-risk applications, simply beating the (human-based) status quo is often enough. High-risk applications, such as self-driving cars, need to meet new gold standards before people can trust the model’s performance. It doesn’t matter if autonomous vehicles are less likely to crash than human drivers, because the technology is held to a higher standard.

Beware the prototype-production gap

Making a proof-of-concept model for a given use case is (often) relatively simple. Making a model suitable for an application in a production environment requires more than an order of magnitude of work.

To avoid falling into the so-called prototype-production gap, founders must think carefully about the performance characteristics required for model deployment, and how these needs will influence the length and resourcing of the development cycle.

Consider the development cycle required for deploying a computer vision model designed for a high-risk application. Let’s say a model achieved 95% accuracy at the prototype stage. However, to go into production, that model needs to make predictions accurately 99.99% of the time. In terms of development, closing that 4.99% accuracy gap is much more challenging than building the prototype.

To achieve that level of accuracy, the model must train on vast amounts of data and learn to react appropriately to all types of situations. AI systems lack common sense, and computer vision models can’t reason as a human would. When they encounter an unexpected scenario that they have never seen before, these models won’t perform predictably. These scenarios, called edge cases, are notoriously difficult to debug within a machine learning context, because machine learning engineers must locate the few examples out of millions where the model fails for a systematic reason.

Edge cases often prevent models from achieving 100% accuracy in the testing phase. Again, autonomous vehicles are a great example, because human drivers can use reason while computer vision models can’t. For example, let’s say after training on enormous amounts of data, a model becomes capable of recognizing cyclists, but then it encounters a reflection of a cyclist. In this situation, the model will likely evaluate the situation as if a cyclist were present and behave unexpectedly, acting as if a cyclist rather than a reflection were there. A human would not make this mistake.

Founders should be aware that applications requiring a high-level of accuracy to enter production require more training time and more training data during the development cycle, and they need to make allowances for additional resources such as time and money before they begin building their models.

Take a data-centric approach

Once founders decide to build a model, they should take a data-centric rather than model-centric approach.

As open source models continue to improve, a company’s competitive edge will no longer come from building more sophisticated models: it’ll come from the quality and quantity of its data. The data, not the model, will become the core of the IP.

To understand how not taking a data-centric approach has stifled deep learning progress, consider the algorithm bias problem.

A lot of medical AI fails to make the jump from the research lab to the real world. That’s because researchers have tended to focus on improving the accuracy of the model in controlled settings rather than think carefully about whether their training data is representative of the population at large.

When medical AI models train on biased datasets, they do not learn how to make predictions about people of varying ages, racial demographics and genders. This knowledge gap leads to misdiagnoses and the perpetuation of existing medical biases.

With a data-centric approach, the aim is to think from first principles what the data that the model needs to train on to achieve the best performance possible.

When building data-centric AI for computer vision, your success will depend on how well you source data. Procuring the best proprietary datasets available is a priority. Unlike more established companies that have been generating their own data, startups may find obtaining exclusive datasets challenging and should consider partnering with established companies or using creative methods such as sophisticated scraping to secure unique datasets.

After securing a supply of data, set up a data management system that enables machine learning engineers to effectively store, filter, query and visualize data in a scalable way. The system needs to be structured so that it can accommodate future needs and uses, including ingesting additional data, reorganizing data, deleting data, cleaning data, querying data with arbitrary points of inquiry and more.

With a management system in place, the next step is ensuring a process for continuous annotation and review. The real world contains messy and imperfect data, so data-centric AI requires robust and iterative annotation pipelines as opposed to once-off annotations.

Think about the subject-matter expertise and labeling tools you’ll need to ensure that high-quality annotations can be completed as efficiently as possible. Also, keep in mind that in the world of data-centric AI, the annotation layer is no longer just procedural. The label structures and architectural design choices will influence how the system is going to learn, and these data labeling techniques will become intellectual property that can give companies a competitive advantage.

Taking a data-centric approach also enables companies to remain model-agnostic, which means they can reap the rewards of future innovations. Having a system dependent on a particular architecture limits a company’s ability to take advantage of more advanced models. For instance, if a company relies on a label ingestion system built for the needs of one model, then refactoring that process might prove difficult and prevent a company from incorporating a newer, better model into its business.

At Encord, we know it’s the data, not the model that matters most, and investing in a data-centric approach allowed us to use the same model for both detecting gastrointestinal polyps and for finding illegal fishing vessels in the ocean.

The technological landscape is evolving rapidly, and in five years, deep learning will look very different. As a result, any AI system developed today needs to take a data-centric approach so that it can incorporate the models of the future.

More TechCrunch

Dating app maker Bumble has acquired Geneva, an online platform built around forming real-world groups and clubs. The company said that the deal is designed to help it expand its…

Bumble buys community building app Geneva to expand further into friendships

CyberArk — one of the army of larger security companies founded out of Israel — is acquiring Venafi, a specialist in machine identity, for $1.54 billion. 

CyberArk snaps up Venafi for $1.54B to ramp up in machine-to-machine security

Founder-market fit is one of the most crucial factors in a startup’s success, and operators (someone involved in the day-to-day operations of a startup) turned founders have an almost unfair advantage…

OpenseedVC, which backs operators in Africa and Europe starting their companies, reaches first close of $10M fund

A Singapore High Court has effectively approved Pine Labs’ request to shift its operations to India.

Pine Labs gets Singapore court approval to shift base to India

The AI Safety Institute, a U.K. body that aims to assess and address risks in AI platforms, has said it will open a second location in San Francisco. 

UK opens office in San Francisco to tackle AI risk

Companies are always looking for an edge, and searching for ways to encourage their employees to innovate. One way to do that is by running an internal hackathon around a…

Why companies are turning to internal hackathons

Featured Article

I’m rooting for Melinda French Gates to fix tech’s broken ‘brilliant jerk’ culture

Women in tech still face a shocking level of mistreatment at work. Melinda French Gates is one of the few working to change that.

22 hours ago
I’m rooting for Melinda French Gates to fix tech’s  broken ‘brilliant jerk’ culture

Blue Origin has successfully completed its NS-25 mission, resuming crewed flights for the first time in nearly two years. The mission brought six tourist crew members to the edge of…

Blue Origin successfully launches its first crewed mission since 2022

Creative Artists Agency (CAA), one of the top entertainment and sports talent agencies, is hoping to be at the forefront of AI protection services for celebrities in Hollywood. With many…

Hollywood agency CAA aims to help stars manage their own AI likenesses

Expedia says Rathi Murthy and Sreenivas Rachamadugu, respectively its CTO and senior vice president of core services product & engineering, are no longer employed at the travel booking company. In…

Expedia says two execs dismissed after ‘violation of company policy’

Welcome back to TechCrunch’s Week in Review. This week had two major events from OpenAI and Google. OpenAI’s spring update event saw the reveal of its new model, GPT-4o, which…

OpenAI and Google lay out their competing AI visions

When Jeffrey Wang posted to X asking if anyone wanted to go in on an order of fancy-but-affordable office nap pods, he didn’t expect the post to go viral.

With AI startups booming, nap pods and Silicon Valley hustle culture are back

OpenAI’s Superalignment team, responsible for developing ways to govern and steer “superintelligent” AI systems, was promised 20% of the company’s compute resources, according to a person from that team. But…

OpenAI created a team to control ‘superintelligent’ AI — then let it wither, source says

A new crop of early-stage startups — along with some recent VC investments — illustrates a niche emerging in the autonomous vehicle technology sector. Unlike the companies bringing robotaxis to…

VCs and the military are fueling self-driving startups that don’t need roads

When the founders of Sagetap, Sahil Khanna and Kevin Hughes, started working at early-stage enterprise software startups, they were surprised to find that the companies they worked at were trying…

Deal Dive: Sagetap looks to bring enterprise software sales into the 21st century

Keeping up with an industry as fast-moving as AI is a tall order. So until an AI can do it for you, here’s a handy roundup of recent stories in the world…

This Week in AI: OpenAI moves away from safety

After Apple loosened its App Store guidelines to permit game emulators, the retro game emulator Delta — an app 10 years in the making — hit the top of the…

Adobe comes after indie game emulator Delta for copying its logo

Meta is once again taking on its competitors by developing a feature that borrows concepts from others — in this case, BeReal and Snapchat. The company is developing a feature…

Meta’s latest experiment borrows from BeReal’s and Snapchat’s core ideas

Welcome to Startups Weekly! We’ve been drowning in AI news this week, with Google’s I/O setting the pace. And Elon Musk rages against the machine.

Startups Weekly: It’s the dawning of the age of AI — plus,  Musk is raging against the machine

IndieBio’s Bay Area incubator is about to debut its 15th cohort of biotech startups. We took special note of a few, which were making some major, bordering on ludicrous, claims…

IndieBio’s SF incubator lineup is making some wild biotech promises

YouTube TV has announced that its multiview feature for watching four streams at once is now available on Android phones and tablets. The Android launch comes two months after YouTube…

YouTube TV’s ‘multiview’ feature is now available on Android phones and tablets

Featured Article

Two Santa Cruz students uncover security bug that could let millions do their laundry for free

CSC ServiceWorks provides laundry machines to thousands of residential homes and universities, but the company ignored requests to fix a security bug.

3 days ago
Two Santa Cruz students uncover security bug that could let millions do their laundry for free

TechCrunch Disrupt 2024 is just around the corner, and the buzz is palpable. But what if we told you there’s a chance for you to not just attend, but also…

Harness the TechCrunch Effect: Host a Side Event at Disrupt 2024

Decks are all about telling a compelling story and Goodcarbon does a good job on that front. But there’s important information missing too.

Pitch Deck Teardown: Goodcarbon’s $5.5M seed deck

Slack is making it difficult for its customers if they want the company to stop using its data for model training.

Slack under attack over sneaky AI training policy

A Texas-based company that provides health insurance and benefit plans disclosed a data breach affecting almost 2.5 million people, some of whom had their Social Security number stolen. WebTPA said…

Healthcare company WebTPA discloses breach affecting 2.5 million people

Featured Article

Microsoft dodges UK antitrust scrutiny over its Mistral AI stake

Microsoft won’t be facing antitrust scrutiny in the U.K. over its recent investment into French AI startup Mistral AI.

3 days ago
Microsoft dodges UK antitrust scrutiny over its Mistral AI stake

Ember has partnered with HSBC in the U.K. so that the bank’s business customers can access Ember’s services from their online accounts.

Embedded finance is still trendy as accounting automation startup Ember partners with HSBC UK

Kudos uses AI to figure out consumer spending habits so it can then provide more personalized financial advice, like maximizing rewards and utilizing credit effectively.

Kudos lands $10M for an AI smart wallet that picks the best credit card for purchases

The EU’s warning comes after Microsoft failed to respond to a legally binding request for information that focused on its generative AI tools.

EU warns Microsoft it could be fined billions over missing GenAI risk info